Neurons in superficial trigeminal subnucleus caudalis responsive to oral cooling, menthol, and other irritant stimuli.
نویسندگان
چکیده
The recent discoveries of cold-sensitive transient receptor potential (TRP) channels prompted us to investigate the responses of neurons in trigeminal subnucleus caudalis (Vc) to intraoral cooling and agonists of TRPM8 and TRPA1. Single units responsive to lingual cooling were recorded in superficial laminae of Vc in thiopental-anesthetized rats. All units responded to noxious heat and 88% responded to menthol. Responses increased with menthol concentration from 0.1 to 1% (6.4-64 mM) and plateaued at 10% (640 mM). Noxious cold-evoked responses were significantly enhanced after menthol in a concentration-dependent manner. Constant-flow application of 1% menthol elicited a phasic discharge that adapted over 2-8 min and significantly enhanced subsequent cold-evoked but not heat-evoked responses; vehicle (10% ethanol) was ineffective. Reapplication of menthol 15 min later elicited a significantly reduced response (self-desensitization). Vc units were similarly excited phasically by 1% menthol dissolved in 40% ethanol. The 40% ethanol briefly excited Vc units during the first minute and reduced subsequent responses to noxious heat and cold while exhibiting neither self-desensitization nor cross-desensitization to menthol. Menthol cross-desensitized Vc responses to 40% ethanol. Most menthol-responsive units also responded to the TRPA1 agonists cinnamaldehyde and mustard oil, and the TRPV1 agonist capsaicin. Units in superficial Vc receive convergent input from primary afferents that express TRPM8, TRPA1, and/or TRPV1 channels, either directly or indirectly via intersubnuclear pathways. The convergent nature of these units suggests a general role in signaling noxious stimuli.
منابع مشابه
Corneal dry-responsive neurons in the spinal trigeminal nucleus respond to innocuous cooling in the rat.
Corneal primary afferent neurons that respond to drying of the ocular surface have been previously characterized and found to respond to innocuous cooling, menthol, and hyperosmotic stimuli. The purpose of the present study was to examine the receptive field properties of second-order neurons in the trigeminal nucleus that respond to drying of the ocular surface. Single-unit electrophysiologica...
متن کاملEugenol and carvacrol excite first- and second-order trigeminal neurons and enhance their heat-evoked responses.
Eugenol and carvacrol from clove and oregano, respectively, are agonists of the warmth-sensitive transient receptor potential channel TRPV3 and the irritant-sensitive transient receptor potential ankyrin (TRPA)-1. Eugenol and carvacrol induce oral irritation that rapidly desensitizes, accompanied by brief enhancement of innocuous warmth and heat pain in humans. We presently investigated if euge...
متن کاملResponse characteristics of lamb trigeminal neurons to stimulation of the oral cavity and epiglottis with different sensory modalities.
A region of the trigeminal complex located at the border of the subnucleus interpolaris and subnucleus caudalis receives not only trigeminal nerve inputs from the face, tongue and palate, but also afferent terminations from other nerves which innervate the oral cavity and upper airway. To increase our understanding of the types of sensory information relayed to this region of the trigeminal nuc...
متن کاملActivation of neurons in rat trigeminal subnucleus caudalis by different irritant chemicals applied to oral or ocular mucosa.
To investigate the role of trigeminal subnucleus caudalis in neural mechanisms of irritation, we recorded single-unit responses to application of a variety of irritant chemicals to the tongue or ocular mucosa in thiopental-anesthetized rats. Recordings were made from wide dynamic range (WDR) and nociceptive-specific units in superficial layers of the dorsomedial caudalis (0-3 mm caudal to obex)...
متن کاملNeural correlates of oral irritation by mustard oil and other pungent chemicals: a hot topic.
Together with taste and smell, oral sensations of touch, temperature, chemical irritation and pain play an important role in determining food flavor. Trigeminal sensations are mediated by sensory fibers innervating the oral mucosa that project via the lingual nerve to reach the brainstem trigeminal complex, with extensive terminations in subnucleus caudalis (Vc) (Carstens et al., 1995). Neurons...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of neurophysiology
دوره 97 2 شماره
صفحات -
تاریخ انتشار 2007